Neural mechanisms underlying target detection in a dragonfly centrifugal neuron.
نویسندگان
چکیده
Visual identification of targets is an important task for many animals searching for prey or conspecifics. Dragonflies utilize specialized optics in the dorsal acute zone, accompanied by higher-order visual neurons in the lobula complex, and descending neural pathways tuned to the motion of small targets. While recent studies describe the physiology of insect small target motion detector (STMD) neurons, little is known about the mechanisms that underlie their exquisite sensitivity to target motion. Lobula plate tangential cells (LPTCs), a group of neurons in dipteran flies selective for wide-field motion, have been shown to take input from local motion detectors consistent with the classic correlation model developed by Hassenstein and Reichardt in the 1950s. We have tested the hypothesis that similar mechanisms underlie the response of dragonfly STMDs. We show that an anatomically characterized centrifugal STMD neuron (CSTMD1) gives responses that depend strongly on target contrast, a clear prediction of the correlation model. Target stimuli are more complex in spatiotemporal terms than the sinusoidal grating patterns used to study LPTCs, so we used a correlation-based computer model to predict response tuning to velocity and width of moving targets. We show that increasing target width in the direction of travel causes a shift in response tuning to higher velocities, consistent with our model. Finally, we show how the morphology of CSTMD1 allows for impressive spatial interactions when more than one target is present in the visual field.
منابع مشابه
Spatial facilitation by a high-performance dragonfly target-detecting neuron
Many animals visualize and track small moving targets at long distances-be they prey, approaching predators or conspecifics. Insects are an excellent model system for investigating the neural mechanisms that have evolved for this challenging task. Specialized small target motion detector (STMD) neurons in the optic lobes of the insect brain respond strongly even when the target size is below th...
متن کاملSelective Attention in an Insect Visual Neuron
Animals need attention to focus on one target amid alternative distracters. Dragonflies, for example, capture flies in swarms comprising prey and conspecifics, a feat that requires neurons to select one moving target from competing alternatives. Diverse evidence, from functional imaging and physiology to psychophysics, highlights the importance of such "competitive selection" in attention for v...
متن کاملFlight Control in the Dragonfly: A Neurobiological Simulation
Neural network simulations of the dragonfly flight neurocontrol system have been developed to understand how this insect uses complex, unsteady aerodynamics. The simulation networks account for the ganglionic spatial distribution of cells as well as the physiologic operating range and the stochastic cellular fIring history of each neuron. In addition the motor neuron firing patterns, "flight co...
متن کاملHarvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells
In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...
متن کاملEscape behavior and escape circuit activation in juvenile crayfish during prey-predator interactions.
The neural systems that control escape behavior have been studied intensively in several animals, including mollusks, fish and crayfish. Surprisingly little is known, however, about the activation and the utilization of escape circuits during prey-predator interactions. To complement the physiological and anatomical studies with a necessary behavioral equivalent, we investigated encounters betw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 210 Pt 18 شماره
صفحات -
تاریخ انتشار 2007